CODE-BASED CRYPTOGRAPHY: STATE OF THE ART Part II

Edoardo Persichetti

19 March 2019

- Structured Codes
- Sparse-Matrix Codes
- Rank Metric
- Conclusions

Part I

STRUCTURED CODES

Traditional approach at current security levels produces very large keys: several Kb to \approx 1Mb.

(Classic McEliece/NTS-KEM).

Traditional approach at current security levels produces very large keys: several Kb to \approx 1Mb.

(Classic McEliece/NTS-KEM).

The problem is: public key is a large matrix, size $O(n^2)$.

Traditional approach at current security levels produces very large keys: several Kb to \approx 1Mb. (Classic McEliece/NTS-KEM).

The problem is: public key is a large matrix, size $O(n^2)$.

Idea: public matrix with compact description (Gaborit '05).

Traditional approach at current security levels produces very large keys: several Kb to \approx 1Mb. (Classic McEliece/NTS-KEM).

The problem is: public key is a large matrix, size $O(n^2)$.

Idea: public matrix with compact description (Gaborit '05).

This would allow to describe public-key more efficiently.

Traditional approach at current security levels produces very large keys: several Kb to \approx 1Mb. (Classic McEliece/NTS-KEM).

The problem is: public key is a large matrix, size $O(n^2)$.

Idea: public matrix with compact description (Gaborit '05).

This would allow to describe public-key more efficiently.

Need families of codes with particular automorphism group.

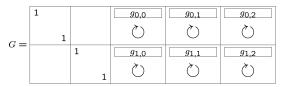
EXAMPLES IN LITERATURE

Quasi-Cyclic Codes (Berger, Cayrel, Gaborit, Otmani '09).

	1		<i>g</i> _{0,0}	<i>g</i> _{0,1}	<i>g</i> _{0,2}
G =	1		\bigcirc	\bigcirc	Ŏ
G =		1	<i>g</i> _{1,0}	<i>g</i> _{1,1}	
		1	\bigcirc	\bigcirc	Ŏ

EXAMPLES IN LITERATURE

Quasi-Cyclic Codes (Berger, Cayrel, Gaborit, Otmani '09).



Quasi-Dyadic Codes (Misoczki, Barreto '09).

Problem: extra structure = extra info for attacker.

Problem: extra structure = extra info for attacker.

Critical algebraic attack (Faugère, Otmani, Perret, Tillich '10).

```
Problem: extra structure = extra info for attacker.
```

Critical algebraic attack (Faugère, Otmani, Perret, Tillich '10).

Solve system of equations derived from $H \cdot G^T = 0$ to recover private key.

Problem: extra structure = extra info for attacker.

Critical algebraic attack (Faugère, Otmani, Perret, Tillich '10).

Solve system of equations derived from $H \cdot G^T = 0$ to recover private key.

QC/QD + algebraic structure crucial to reduce number of unknowns of system.

Problem: extra structure = extra info for attacker.

Critical algebraic attack (Faugère, Otmani, Perret, Tillich '10).

Solve system of equations derived from $H \cdot G^T = 0$ to recover private key.

QC/QD + algebraic structure crucial to reduce number of unknowns of system.

After a few years of fixes and new attacks: keys getting bigger, confidence/interest getting smaller.

(Faugère, Otmani, Perret, de Portzamparc, Tillich '16, Barelli-Couvreur '18).

BIG QUAKE: based on Quasi-Cyclic Binary Goppa Codes

BIG QUAKE: based on Quasi-Cyclic Binary Goppa Codes

Designed in a conservative way.

BIG QUAKE: based on Quasi-Cyclic Binary Goppa Codes

Designed in a conservative way.

BIG QUAKE parameters (bytes):

q	т	n	t	PK Size	SK Size	Ciph Size	Security
2	18	10,070	190	149,625	41,804	492	5
2	18	7,410	152	84,132	30,860	406	3
2	12	3,510	91	25,389	14,772	201	1

BIG QUAKE: based on Quasi-Cyclic Binary Goppa Codes

Designed in a conservative way.

BIG QUAKE parameters (bytes):

q	т	n	t	PK Size	SK Size	Ciph Size	Security
2	18	10,070	190	149,625	41,804	492	5
2	18	7,410	152	84,132	30,860	406	3
2	12	3,510	91	25,389	14,772	201	1

DAGS: based on Quasi-Dyadic q-ary Generalized Srivastava Codes

BIG QUAKE: based on Quasi-Cyclic Binary Goppa Codes

Designed in a conservative way.

BIG QUAKE parameters (bytes):

q	т	п	t	PK Size	SK Size	Ciph Size	Security
2	18	10,070	190	149,625	41,804	492	5
2	18	7,410	152	84,132	30,860	406	3
2	12	3,510	91	25,389	14,772	201	1

DAGS: based on Quasi-Dyadic *q*-ary Generalized Srivastava Codes

More aggressive choice of parameters.

BIG QUAKE: based on Quasi-Cyclic Binary Goppa Codes

Designed in a conservative way.

BIG QUAKE parameters (bytes):

q	т	n	t	PK Size	SK Size	Ciph Size	Security
2	18	10,070	190	149,625	41,804	492	5
2	18	7,410	152	84,132	30,860	406	3
2	12	3,510	91	25,389	14,772	201	1

DAGS: based on Quasi-Dyadic *q*-ary Generalized Srivastava Codes

More aggressive choice of parameters.

DAGS parameters (bytes):

q	m	n	t	PK Size	SK Size	Ciph Size	Security
2 ⁸	2	1,600	176	19,712	6,400	1,632	5
2 ⁸	2	1,216	176	11,264	4,864	1,248	3
2 ⁶	2	832	104	8,112	2,496	656	1

Part II

SPARSE-MATRIX CODES

.

DEFINITION 1 (LDPC CODE)

An [n, k] binary linear code which admits a parity-check matrix of constant row weight $w \in O(1)$.

DEFINITION 1 (LDPC CODE)

An [n, k] binary linear code which admits a parity-check matrix of constant row weight $w \in O(1)$.

If we write $H = (H_0 | H_1)$ resp. $r \times k$ and $r \times r$ then $G = (I_k | H_0^T H_1^{-T})$.

DEFINITION 1 (LDPC CODE)

An [n, k] binary linear code which admits a parity-check matrix of constant row weight $w \in O(1)$.

If we write $H = (H_0 | H_1)$ resp. $r \times k$ and $r \times r$ then $G = (I_k | H_0^T H_1^{-T})$.

The non-trivial block is dense, so this is a natural choice of public key for McEliece.

DEFINITION 1 (LDPC CODE)

An [n, k] binary linear code which admits a parity-check matrix of constant row weight $w \in O(1)$.

If we write $H = (H_0 | H_1)$ resp. $r \times k$ and $r \times r$ then $G = (I_k | H_0^T H_1^{-T})$.

The non-trivial block is dense, so this is a natural choice of public key for McEliece.

Decodable with very efficient probabilistic "bit flipping" algorithm (Gallager, '63), small decoding failure rate (DFR).

This is also a decoding problem! So we have essentially one assumption.

This is also a decoding problem! So we have essentially one assumption.

Best attacks: generic "search" algorithms like Information-Set Decoding (ISD).

This is also a decoding problem! So we have essentially one assumption.

Best attacks: generic "search" algorithms like Information-Set Decoding (ISD).

MDPC: "relaxed" version of LDPC (Misoczki, Tillich, Sendrier and Barreto '12).

This is also a decoding problem! So we have essentially one assumption.

Best attacks: generic "search" algorithms like Information-Set Decoding (ISD).

MDPC: "relaxed" version of LDPC (Misoczki, Tillich, Sendrier and Barreto '12).

Change weight *w* from very low (\approx 10) to "moderate" ($O(\sqrt{n})$).

This is also a decoding problem! So we have essentially one assumption.

Best attacks: generic "search" algorithms like Information-Set Decoding (ISD).

MDPC: "relaxed" version of LDPC (Misoczki, Tillich, Sendrier and Barreto '12).

Change weight *w* from very low (\approx 10) to "moderate" ($O(\sqrt{n})$).

Still decodable, gain in security makes up for degradation.

STRUCTURES SPARSE-MATRIX CODES

Using "plain" LDPC/MDPC is not practical due to long code lengths.

STRUCTURES SPARSE-MATRIX CODES

Using "plain" LDPC/MDPC is not practical due to long code lengths.

Possible to build QC-LDPC/MDPC codes and have compact keys.

Using "plain" LDPC/MDPC is not practical due to long code lengths.

Possible to build QC-LDPC/MDPC codes and have compact keys.

Matrices formed by circulant blocks

a_0	a_1		a_{p-1}
<i>a</i> _{p-1}	a_0		<i>a</i> _{p-2}
1 :	÷	·	:
a ₁	a_2		a_0

Using "plain" LDPC/MDPC is not practical due to long code lengths.

Possible to build QC-LDPC/MDPC codes and have compact keys.

Matrices formed by circulant blocks

$\begin{bmatrix} a_0 \end{bmatrix}$	a_1		a_{p-1}
a_{p-1}	a_0		<i>a</i> _{p-2}
1 :	÷	·	:
_ a₁	a_2		a_0

Correspond to ideals of $\mathcal{R} = \mathbb{F}_2[x]/(x^p - 1)$: describe using ring arithmetic.

Using "plain" LDPC/MDPC is not practical due to long code lengths.

Possible to build QC-LDPC/MDPC codes and have compact keys.

Matrices formed by circulant blocks

$\begin{bmatrix} a_0 \end{bmatrix}$	a_1		a_{p-1}
a_{p-1}	a_0		<i>a</i> _{p-2}
1 :	÷	۰.	:
a ₁	a_2		a_0

Correspond to ideals of $\mathcal{R} = \mathbb{F}_2[x]/(x^p - 1)$: describe using ring arithmetic.

Sparse-matrix codes don't possess inherent algebraic structure.

Using "plain" LDPC/MDPC is not practical due to long code lengths.

Possible to build QC-LDPC/MDPC codes and have compact keys.

Matrices formed by circulant blocks

$\begin{bmatrix} a_0 \end{bmatrix}$	a_1		a_{p-1}
a_{p-1}	a_0		<i>a</i> _{p-2}
1 :	÷	·	:
a ₁	a_2		a_0

Correspond to ideals of $\mathcal{R} = \mathbb{F}_2[x]/(x^p - 1)$: describe using ring arithmetic.

Sparse-matrix codes don't possess inherent algebraic structure.

QC property alone does not provide a structural attack.

EDOARDO PERSICHETTI

FLORIDA ATLANTIC UNIVERSITY

SPARSE-MATRIX MCELIECE

KEY GENERATION

- Choose h_0 , h_1 in \mathcal{R} of combined weight w.
- SK: parity-check matrix formed by circulant blocks h_0, h_1 .
- PK: generator matrix formed by identity and $g = h_0 h_1^{-1}$.

SPARSE-MATRIX MCELIECE

KEY GENERATION

- Choose h_0, h_1 in \mathcal{R} of combined weight w.
- SK: parity-check matrix formed by circulant blocks h_0, h_1 .
- PK: generator matrix formed by identity and $g = h_0 h_1^{-1}$.

ENCRYPTION

- Take message $\mu \in \mathcal{R}$.
- Sample vectors e_0, e_1 in \mathcal{R} of combined weight *t*.
- Output $c = (\mu + e_0, \mu \cdot g + e_1)$.

Key Generation

- Choose h_0, h_1 in \mathcal{R} of combined weight w.
- SK: parity-check matrix formed by circulant blocks h_0, h_1 .
- PK: generator matrix formed by identity and $g = h_0 h_1^{-1}$.

ENCRYPTION

- Take message $\mu \in \mathcal{R}$.
- Sample vectors e_0, e_1 in \mathcal{R} of combined weight t.
- Output $c = (\mu + e_0, \mu \cdot g + e_1)$.

DECRYPTION

- Set $(e_0, e_1) = Decode_{BitFlipping}(c)$.
- Return \perp if decoding fails.
- Else recover μ (truncate).

Three variants, independently published.

Three variants, independently published.

1, 2: CAKE (Barreto, Gueron, Güneysu, Misoczki, P., Sendrier, Tillich, '17).

Three variants, independently published.

- 1, 2: CAKE (Barreto, Gueron, Güneysu, Misoczki, P., Sendrier, Tillich, '17).
- 3: Ouroboros (Deneuville, Gaborit, Zémor, '17).

Three variants, independently published.

1, 2: CAKE (Barreto, Gueron, Güneysu, Misoczki, P., Sendrier, Tillich, '17).

3: Ouroboros (Deneuville, Gaborit, Zémor, '17).

BIKE-1: use McEliece and non-systematic generator matrix to avoid polynomial inversion and save time (latency).

Three variants, independently published.

1, 2: CAKE (Barreto, Gueron, Güneysu, Misoczki, P., Sendrier, Tillich, '17).

3: Ouroboros (Deneuville, Gaborit, Zémor, '17).

BIKE-1: use McEliece and non-systematic generator matrix to avoid polynomial inversion and save time (latency).

BIKE-2: use Niederreiter and systematic parity-check with (possibly) pre-computed keys to save space (bandwidth).

Three variants, independently published.

1, 2: CAKE (Barreto, Gueron, Güneysu, Misoczki, P., Sendrier, Tillich, '17).

3: Ouroboros (Deneuville, Gaborit, Zémor, '17).

BIKE-1: use McEliece and non-systematic generator matrix to avoid polynomial inversion and save time (latency).

BIKE-2: use Niederreiter and systematic parity-check with (possibly) pre-computed keys to save space (bandwidth).

BIKE-3: use "noisy" decoder to have simpler security reduction.

Two variants from same basis: KEM (Niederreiter) / PKE (McEliece).

Two variants from same basis: KEM (Niederreiter) / PKE (McEliece).

Following a long line of work from Baldi, Chiaraluce et al. (2007-onwards).

Two variants from same basis: KEM (Niederreiter) / PKE (McEliece).

Following a long line of work from Baldi, Chiaraluce et al. (2007-onwards).

Variable number of blocks $n_0 = 2, 3, 4$.

Two variants from same basis: KEM (Niederreiter) / PKE (McEliece).

Following a long line of work from Baldi, Chiaraluce et al. (2007-onwards).

Variable number of blocks $n_0 = 2, 3, 4$.

Private key is made dense via secret matrix $Q \longrightarrow \approx$ QC-MDPC.

Two variants from same basis: KEM (Niederreiter) / PKE (McEliece).

Following a long line of work from Baldi, Chiaraluce et al. (2007-onwards).

Variable number of blocks $n_0 = 2, 3, 4$.

Private key is made dense via secret matrix $Q \longrightarrow \approx$ QC-MDPC.

Specialized "*Q*-decoder" provides better decoding performance.

Two variants from same basis: KEM (Niederreiter) / PKE (McEliece).

Following a long line of work from Baldi, Chiaraluce et al. (2007-onwards).

Variable number of blocks $n_0 = 2, 3, 4$.

Private key is made dense via secret matrix $Q \longrightarrow \approx$ QC-MDPC.

Specialized "*Q*-decoder" provides better decoding performance.

Sizes comparable to BIKE.

BIKE parameters (bytes):

BIKE-#	р	W	t	PK Size	SK Size	Ciph Size
1	10,163	142	134	2,541	267	2,541
2	10,163	142	134	1,271	267	1,271
3	11,027	134	154	2,757	252	2,757

BIKE parameters (bytes):

BIKE-#	р	W	t	PK Size	SK Size	Ciph Size
1	10,163	142	134	2,541	267	2,541
2	10,163	142	134	1,271	267	1,271
3	11,027	134	154	2,757	252	2,757

Below we present LEDAkem for ease of comparison.

BIKE parameters (bytes):

BIKE-#	р	W	t	PK Size	SK Size	Ciph Size
1	10,163	142	134	2,541	267	2,541
2	10,163	142	134	1,271	267	1,271
3	11,027	134	154	2,757	252	2,757

Below we present LEDAkem for ease of comparison.

LEDAkem parameters (bytes):

n_0	р	W	t	PK Size	SK Size	Ciph Size
2	15,013	9	143	1,880	468	1,880
3	9,643	13	90	2,416	604	1,208
4	8,467	11	72	3,192	716	1,064

DECODING FAILURES ARE BAD!

Problem 1: reaction attacks (Guo, Johansson, Stankovski, '16).

Observe decryption of several (\approx 300 million) ciphertexts: analyze decoding failures to reconstruct private key (distance spectrum).

Observe decryption of several (\approx 300 million) ciphertexts: analyze decoding failures to reconstruct private key (distance spectrum).

Solution: use ephemeral keys.

Observe decryption of several (\approx 300 million) ciphertexts: analyze decoding failures to reconstruct private key (distance spectrum).

Solution: use ephemeral keys.

Problem 2: IND-CCA security.

Observe decryption of several (\approx 300 million) ciphertexts: analyze decoding failures to reconstruct private key (distance spectrum).

Solution: use ephemeral keys.

Problem 2: IND-CCA security.

IND-CCA conversions require perfect correctness or at least trivial DFR ($\approx 2^{-128}$).

Observe decryption of several (\approx 300 million) ciphertexts: analyze decoding failures to reconstruct private key (distance spectrum).

Solution: use ephemeral keys.

Problem 2: IND-CCA security.

IND-CCA conversions require perfect correctness or at least trivial DFR ($\approx 2^{-128}$).

Decoding algorithms have (currently) DFR around 10^{-7} to 10^{-9} .

Observe decryption of several (\approx 300 million) ciphertexts: analyze decoding failures to reconstruct private key (distance spectrum).

Solution: use ephemeral keys.

Problem 2: IND-CCA security.

IND-CCA conversions require perfect correctness or at least trivial DFR ($\approx 2^{-128}).$

Decoding algorithms have (currently) DFR around 10^{-7} to 10^{-9} .

Solution: all variants only claim IND-CPA security.

Possible to adjust block length to achieve desired DFR.

Possible to adjust block length to achieve desired DFR.

BIKE will feature IND-CCA version with static keys in Round 2.

Possible to adjust block length to achieve desired DFR.

BIKE will feature IND-CCA version with static keys in Round 2.

5 out of 7 code-based NIST submissions in Round 2 use QC structure.

Possible to adjust block length to achieve desired DFR.

BIKE will feature IND-CCA version with static keys in Round 2.

5 out of 7 code-based NIST submissions in Round 2 use QC structure.

- BIKE
- Classic McEliece
- HQC
- LEDAcrypt
- NTS-KEM
- ROLLO
- RQC

Possible to adjust block length to achieve desired DFR.

BIKE will feature IND-CCA version with static keys in Round 2.

5 out of 7 code-based NIST submissions in Round 2 use QC structure.

Is there any other structure we can use? Can we generalize this, do it better/differently?

Possible to adjust block length to achieve desired DFR.

BIKE will feature IND-CCA version with static keys in Round 2.

5 out of 7 code-based NIST submissions in Round 2 use QC structure.

Is there any other structure we can use? Can we generalize this, do it better/differently?

Use alternative Reproducible Codes (Santini, P., Baldi, '18).

Possible to adjust block length to achieve desired DFR.

BIKE will feature IND-CCA version with static keys in Round 2.

5 out of 7 code-based NIST submissions in Round 2 use QC structure.

Is there any other structure we can use? Can we generalize this, do it better/differently?

Use alternative Reproducible Codes (Santini, P., Baldi, '18).

Can possibly negate DOOM speedup and reaction attacks.

Part III

RANK METRIC

One of alternative metrics used in Coding Theory.

One of alternative metrics used in Coding Theory.

RANK METRIC

Let
$$x \in \mathbb{F}_{q^m}^n$$
 and $\beta = (\beta_1, \ldots, \beta_m)$ basis for \mathbb{F}_{q^m} over \mathbb{F}_q .

One of alternative metrics used in Coding Theory.

RANK METRIC

Let $x \in \mathbb{F}_{q^m}^n$ and $\beta = (\beta_1, \dots, \beta_m)$ basis for \mathbb{F}_{q^m} over \mathbb{F}_q .

 $wt_R(x) = Rank(\phi_\beta(x))$, where ϕ_β is projection over \mathbb{F}_q (columns).

One of alternative metrics used in Coding Theory.

RANK METRIC

Let $x \in \mathbb{F}_{q^m}^n$ and $\beta = (\beta_1, \dots, \beta_m)$ basis for \mathbb{F}_{q^m} over \mathbb{F}_q . $wt_R(x) = Rank(\phi_\beta(x))$, where ϕ_β is projection over \mathbb{F}_q (columns). $d_R(x, y) = wt_R(x - y)$.

One of alternative metrics used in Coding Theory.

RANK METRIC

Let $x \in \mathbb{F}_{q^m}^n$ and $\beta = (\beta_1, \dots, \beta_m)$ basis for \mathbb{F}_{q^m} over \mathbb{F}_q . $wt_R(x) = Rank(\phi_\beta(x))$, where ϕ_β is projection over \mathbb{F}_q (columns). $d_R(x, y) = wt_R(x - y)$.

So rank metric codes are matrix codes.

One of alternative metrics used in Coding Theory.

RANK METRIC

Let $x \in \mathbb{F}_{q^m}^n$ and $\beta = (\beta_1, \dots, \beta_m)$ basis for \mathbb{F}_{q^m} over \mathbb{F}_q . $wt_R(x) = Rank(\phi_\beta(x))$, where ϕ_β is projection over \mathbb{F}_q (columns). $d_R(x, y) = wt_R(x - y)$.

So rank metric codes are matrix codes.

[n, k] RANK METRIC LINEAR CODE OVER \mathbb{F}_{q^m}

A subspace of dimension k of $\mathbb{F}_{q^m}^n$ (Gabidulin, '85).

One of alternative metrics used in Coding Theory.

RANK METRIC

Let $x \in \mathbb{F}_{q^m}^n$ and $\beta = (\beta_1, \dots, \beta_m)$ basis for \mathbb{F}_{q^m} over \mathbb{F}_q . $wt_R(x) = Rank(\phi_\beta(x))$, where ϕ_β is projection over \mathbb{F}_q (columns). $d_R(x, y) = wt_R(x - y)$.

So rank metric codes are matrix codes.

[n, k] RANK METRIC LINEAR CODE OVER \mathbb{F}_{q^m}

A subspace of dimension k of $\mathbb{F}_{q^m}^n$ (Gabidulin, '85).

A subspace of dimension k of $\mathbb{F}_q^{m \times n}$ (Delsarte, '78).

One of alternative metrics used in Coding Theory.

RANK METRIC

Let $x \in \mathbb{F}_{q^m}^n$ and $\beta = (\beta_1, \dots, \beta_m)$ basis for \mathbb{F}_{q^m} over \mathbb{F}_q . $wt_R(x) = Rank(\phi_\beta(x))$, where ϕ_β is projection over \mathbb{F}_q (columns). $d_R(x, y) = wt_R(x - y)$.

So rank metric codes are matrix codes.

[n, k] rank metric linear code over \mathbb{F}_{q^m}

A subspace of dimension k of $\mathbb{F}_{q^m}^n$ (Gabidulin, '85).

A subspace of dimension k of $\mathbb{F}_q^{m \times n}$ (Delsarte, '78).

SUPPORT OF A WORD

 $Supp(x) = span < x_1, \ldots, x_n >_{\mathbb{F}_q}$.

• Singleton Bound on largest minimum distance (MRD codes).

- Singleton Bound on largest minimum distance (MRD codes).
- GV Bound on size of spheres.

- Singleton Bound on largest minimum distance (MRD codes).
- GV Bound on size of spheres.
- Syndrome Decoding Problem (RSD): proved to be NP-Hard.

- Singleton Bound on largest minimum distance (MRD codes).
- GV Bound on size of spheres.
- Syndrome Decoding Problem (RSD): proved to be NP-Hard.

Few families with efficient decoding algorithm.

- Singleton Bound on largest minimum distance (MRD codes).
- GV Bound on size of spheres.
- Syndrome Decoding Problem (RSD): proved to be NP-Hard.

Few families with efficient decoding algorithm.

• Gabidulin codes: ≈Reed-Solomon.

- Singleton Bound on largest minimum distance (MRD codes).
- GV Bound on size of spheres.
- Syndrome Decoding Problem (RSD): proved to be NP-Hard.

Few families with efficient decoding algorithm.

- Gabidulin codes: ≈Reed-Solomon.
- Low-Rank Parity-Check codes (LRPC): ≈LDPC.

- Singleton Bound on largest minimum distance (MRD codes).
- GV Bound on size of spheres.
- Syndrome Decoding Problem (RSD): proved to be NP-Hard.

Few families with efficient decoding algorithm.

- Gabidulin codes: ≈Reed-Solomon.
- Low-Rank Parity-Check codes (LRPC): ≈LDPC.

Generic attack: rank equivalent of ISD, combinatorial (Chabaud, Stern, '96).

- Singleton Bound on largest minimum distance (MRD codes).
- GV Bound on size of spheres.
- Syndrome Decoding Problem (RSD): proved to be NP-Hard.

Few families with efficient decoding algorithm.

- Gabidulin codes: ≈Reed-Solomon.
- Low-Rank Parity-Check codes (LRPC): ≈LDPC.

Generic attack: rank equivalent of ISD, combinatorial (Chabaud, Stern, '96). Structural attacks exist (Gibson, '95, '96, Overbeck, '05, Debris-Alazard, Tillich, '18).

CASE STUDY: NIST SUBMISSIONS

ROLLO: merge of 3 slightly different proposals on QC-LRPC codes.

• LAKE: rank-Niederreiter, \approx BIKE-2.

- LAKE: rank-Niederreiter, \approx BIKE-2.
- LOCKER: PKE version of LAKE.

- LAKE: rank-Niederreiter, \approx BIKE-2.
- LOCKER: PKE version of LAKE.
- Rank-Ouroboros: rank version of Ouroboros (BIKE-3).

- LAKE: rank-Niederreiter, \approx BIKE-2.
- LOCKER: PKE version of LAKE.
- Rank-Ouroboros: rank version of Ouroboros (BIKE-3).

RQC: based on random codes \approx HQC.

- LAKE: rank-Niederreiter, \approx BIKE-2.
- LOCKER: PKE version of LAKE.
- Rank-Ouroboros: rank version of Ouroboros (BIKE-3).

RQC: based on random codes \approx HQC.

Advantage: higher attack complexity $\mathcal{O}((n-k)^3 m^3 q^{t \lceil \frac{(k+1)m}{n} \rceil - m})$.

- LAKE: rank-Niederreiter, \approx BIKE-2.
- LOCKER: PKE version of LAKE.
- Rank-Ouroboros: rank version of Ouroboros (BIKE-3).

RQC: based on random codes \approx HQC.

Advantage: higher attack complexity $\mathcal{O}((n-k)^3 m^3 q^{t \lceil \frac{(k+1)m}{n} \rceil - m})$.

Choose much smaller parameters, get smaller sizes.

- LAKE: rank-Niederreiter, \approx BIKE-2.
- LOCKER: PKE version of LAKE.
- Rank-Ouroboros: rank version of Ouroboros (BIKE-3).

RQC: based on random codes \approx HQC.

Advantage: higher attack complexity $\mathcal{O}((n-k)^3 m^3 q^{t \lceil \frac{(k+1)m}{n} \rceil - m})$.

Choose much smaller parameters, get smaller sizes.

No DFR for RQC.

ROLLO: large amount of parameter sets, not easy to read through, some info missing. We chose here Rank-Ouroboros.

ROLLO: large amount of parameter sets, not easy to read through, some info missing. We chose here Rank-Ouroboros.

q	m	р	t	PK Size	SK Size	Ciph Size	Security
2	127	67	8	2,128	2,128	2,128	5
2	101	59	8	1,490	1,490	1,490	3
2	89	53	6	1,180	1,180	1,180	1

Rank-Ouroboros parameters (bytes):

ROLLO: large amount of parameter sets, not easy to read through, some info missing. We chose here Rank-Ouroboros.

Rank-Ouroboros p	oarameters	(bytes):
------------------	------------	----------

q	m	р	t	PK Size	SK Size	Ciph Size	Security
2	127	67	8	2,128	2,128	2,128	5
2	101	59	8	1,490	1,490	1,490	3
2	89	53	6	1,180	1,180	1,180	1

DFR for above parameters is still too low $(2^{-36}, 2^{-42})$ for e.g. IND-CCA security.

ROLLO: large amount of parameter sets, not easy to read through, some info missing. We chose here Rank-Ouroboros.

Rank-Ouro	boros	parar	neters	(byt	es):	

q	т	р	t	PK Size	SK Size	Ciph Size	Security
2	127	67	8	2,128	2,128	2,128	5
2	101	59	8	1,490	1,490	1,490	3
2	89	53	6	1,180	1,180	1,180	1

DFR for above parameters is still too low $(2^{-36}, 2^{-42})$ for e.g. IND-CCA security.

RQC parameters (bytes):

q	m	р	t	PK Size	SK Size	Ciph Size	Security
2	139	101	8	3,510	3,510	3,574	5
2	113	97	7	2,741	2,741	2,805	3
2	89	67	6	1,491	1,491	1,555	1

ROLLO: large amount of parameter sets, not easy to read through, some info missing. We chose here Rank-Ouroboros.

Rank-C	Jurobo	pros p	Darai	meters (b	ytes):	
						-

q	m	р	t	PK Size	SK Size	Ciph Size	Security
2	127	67	8	2,128	2,128	2,128	5
2	101	59	8	1,490	1,490	1,490	3
2	89	53	6	1,180	1,180	1,180	1

DFR for above parameters is still too low $(2^{-36}, 2^{-42})$ for e.g. IND-CCA security.

RQC parameters (bytes):

q	m	р	t	PK Size	SK Size	Ciph Size	Security
2	139	101	8	3,510	3,510	3,574	5
2	113	97	7	2,741	2,741	2,805	3
2	89	67	6	1,491	1,491	1,555	1

Sizes can be further compressed using seed expanders (also in other schemes).

EDOARDO PERSICHETTI

Sizes: very promising.

Speed: a little behind other code-based schemes.

Speed: a little behind other code-based schemes.

Cryptanalysis: a lot behind.

Speed: a little behind other code-based schemes.

Cryptanalysis: a lot behind.

At least 25 publications on ISD and improvements (see Classic McEliece document).

Speed: a little behind other code-based schemes.

Cryptanalysis: a lot behind.

At least 25 publications on ISD and improvements (see Classic McEliece document).

Only a handful on rank metric

(Ourivski, Johansson, '02, Gaborit, Ruatta, Schrek, '16, Aragon, Gaborit, Hauteville, Tillich, '18).

Speed: a little behind other code-based schemes.

Cryptanalysis: a lot behind.

At least 25 publications on ISD and improvements (see Classic McEliece document).

Only a handful on rank metric

(Ourivski, Johansson, '02, Gaborit, Ruatta, Schrek, '16, Aragon, Gaborit, Hauteville, Tillich, '18).

Several aspects and details unclear or unexplored.

Speed: a little behind other code-based schemes.

Cryptanalysis: a lot behind.

At least 25 publications on ISD and improvements (see Classic McEliece document).

Only a handful on rank metric

(Ourivski, Johansson, '02, Gaborit, Ruatta, Schrek, '16, Aragon, Gaborit, Hauteville, Tillich, '18).

Several aspects and details unclear or unexplored.

More investigation needed.

Part IV

CONCLUSIONS

Several distinctive strengths (and few well-known drawbacks).

Several distinctive strengths (and few well-known drawbacks).

Suitable for KEM: key exchange + encryption.

Several distinctive strengths (and few well-known drawbacks).

Suitable for KEM: key exchange + encryption.

NIST has identified three macro-areas, each with their own pros/cons:

Several distinctive strengths (and few well-known drawbacks).

Suitable for KEM: key exchange + encryption.

NIST has identified three macro-areas, each with their own pros/cons:

• Conservative (binary Goppa, no structure)

Several distinctive strengths (and few well-known drawbacks).

Suitable for KEM: key exchange + encryption.

NIST has identified three macro-areas, each with their own pros/cons:

- Conservative (binary Goppa, no structure)
- Sparse-matrix (LDPC/MDPC, QC structure...for now)

Several distinctive strengths (and few well-known drawbacks).

Suitable for KEM: key exchange + encryption.

NIST has identified three macro-areas, each with their own pros/cons:

- Conservative (binary Goppa, no structure)
- Sparse-matrix (LDPC/MDPC, QC structure...for now)
- Rank metric (LRPC, QC structure)

Several distinctive strengths (and few well-known drawbacks).

Suitable for KEM: key exchange + encryption.

NIST has identified three macro-areas, each with their own pros/cons:

- Conservative (binary Goppa, no structure)
- Sparse-matrix (LDPC/MDPC, QC structure...for now)
- Rank metric (LRPC, QC structure)

HQC/RQC: theoretical security advantage (CCA).

Several distinctive strengths (and few well-known drawbacks).

Suitable for KEM: key exchange + encryption.

NIST has identified three macro-areas, each with their own pros/cons:

- Conservative (binary Goppa, no structure)
- Sparse-matrix (LDPC/MDPC, QC structure...for now)
- Rank metric (LRPC, QC structure)

HQC/RQC: theoretical security advantage (CCA).

Round 2: protocol refinements, re-parametrizations, new/improved implementations.

Detailed competition wiki/database.

Detailed competition wiki/database.

Will include parameters, sizes, security assumptions etc. + challenges.

Detailed competition wiki/database.

Will include parameters, sizes, security assumptions etc. + challenges.

"Living" resource with external contributions.

Detailed competition wiki/database.

Will include parameters, sizes, security assumptions etc. + challenges.

"Living" resource with external contributions.

Work in progress, first draft nearly ready - stay tuned!

Thank you